Vacancies in GaN bulk and nanowires: effect of self-interaction corrections.
نویسندگان
چکیده
We investigate gallium and nitrogen vacancies in gallium nitride (GaN) bulk and nanowires using self-interaction corrected pseudopotentials (SIC). In particular, we examine the band structures to compare and contrast differences between the SIC results and standard density functional theory (DFT) results using a generalized gradient approximation (GGA) (Perdew et al 1996 Phys. Rev. Lett. 77 3865) functional. For pure nanowires, we observed similar trends in the bandgap behaviour, with the gap decreasing for increasing nanowire diameters (with larger bandgaps using SIC pseudopotentials). For gallium vacancies in bulk GaN and GaN nanowires, SIC results are similar to DFT-GGA results, albeit with larger bandgaps. Nitrogen vacancies in bulk GaN show similar defect-induced states near the conduction band, whilst a lower lying defect state is observed below the valence band for the DFT-GGA calculations and above the valence band for the SIC results. For nitrogen vacancies in GaN nanowires, similar defect states are observed near the conduction band, however, while the SIC calculations also show a defect state/s above the valence band, we were unable to locate this state for the DFT-GGA calculations (possibly because it is hybridized with edge states and buried below the valence band).
منابع مشابه
Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method
Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...
متن کاملRapid Communications Strong piezoelectricity in individual GaN nanowires
GaN nanowires are promising building blocks for future nanoelectronics, optoelectronic devices, and nanogenerators. Here, we report on strong piezoelectricity in individual single-crystal GaN nanowires revealed by direct measurement of the piezoelectric constant using piezoresponse force microscopy. Our experimental results show that individual c-axis GaN nanowires, with a characteristic dimens...
متن کاملGiant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.
Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar a...
متن کاملIndividual GaN nanowires exhibit strong piezoelectricity in 3D.
Semiconductor GaN NWs are promising components in next generation nano- and optoelectronic systems. In addition to their direct band gap, they exhibit piezoelectricity, which renders them particularly attractive in energy harvesting applications for self-powered devices. Nanowires are often considered as one-dimensional nanostructures; however, the electromechanical coupling leads to a third ra...
متن کاملStudy the Surface Effect on the Buckling of Nanowires Embedded in Winkler–Pasternak Elastic Medium Based on a Nonlocal Theory
Nano structures such as nanowires, nanobeams and nanoplates have been investigated widely for their innovative properties. In this paper the buckling of nanowires surrounded in a Winkler - Pasternak elastic medium has been examined based on the nonlocal Euler-Bernoully model with considering the surface effects. In the following a parametric study that explores the influence of numerous physica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 24 25 شماره
صفحات -
تاریخ انتشار 2012